Signals and Systems Problems S2, S3, S4

Reading: O\&W-3.3, 3.4, 3.5, 3.8 (continuous time signals only)
S2) The signal $x(t)$ is periodic, with period 2, and

$$
x(t)= \begin{cases}t+1 & -1<t<0 \\ 1-t & 0<t<+1\end{cases}
$$

Determine the Fourier series for $x(t)$.
[Hint: Make use of the properties of Fourier series to simplify this problem]

S3) If $x(t)$ is a periodic signal with the following Fourier series coefficients

$$
a_{k}=\left\{\begin{array}{c}
1 \quad k=0 \\
j\left(\frac{1}{2}\right)^{|k|} \quad \text { otherwise }
\end{array}\right.
$$

(i) Is $x(t)$ a real valued function of time?
(ii) Is $x(t)$ an even function of time?
(iii) Is $d x(t) / d t$ an even function of time?

S4) For the following signals

$$
\begin{aligned}
& x(t)=\cos (\pi t) \\
& y(t)=\sin (\pi t) \\
& z(t)=x(t) y(t)
\end{aligned}
$$

and with a fundamental period of $T=2$,
i) Determine the Fourier series coefficients for $x(t)$ and $y(t)$.
ii) Use the results of part (i), along with the multiplication property of Fourier series, to determine the Fourier series for $\mathrm{z}(\mathrm{t})$.
[Hint: part (ii) can be greatly simplified by using the fact that there are only a few non-zero coefficients in the Fourier series' for $x(t)$ and $y(t)]$

